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WELL-POSEDNESS AND CONVERGENCE
OF' SOME REGULARIZATION METHODS
FFOR NONLINEAR ILL-POSED PROBLEMS?

Thomas I. Seidman? and Curtis R. Vogel®

ABSTRACT: In this paper we analyze two regularization methods for nonlinear ill-
posed problems. The first is a penalty method called Tikhonov regularization, in
which one solves an unconstrained optimization problem while the second is based on
a constrained optimization problem. For each method we examine the well-posedness
of the respective optimization problem. We then show strong convergence of the
regularized ‘solutions’ to the true solution. (Note that this is well known for the
application of these methods to linear problems.) In this analysis we consider such
factors as the convergence of perturbed data to the true data, inexact solution of the
respective optimization problems, and the choice of the regularization parameters.
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1. Introduction

Consider a nonlinear operator equation
(1.1) F(z) =7

where F' : X — Y for Banach spaces X', Y. We assume that (1.1) has a unique solution
7 but is ill-posed in the sense that this solution does not depend continuously on the
data, i.e., perturbed problems

(1.2) Fz) =y

may have no solution or, if (1.2) has a (not necessarily unique) solution z, one may
have a large change (z — Z) for the solution corresponding to very small variations in
the data: (y—g) and [F(-)— I'(-)]. Note that the precise specification of the nonlinear
operator /function F(:) is considered part of the data. A ‘typical’ example might be
a nonlinear Fredholm integral equation of first kind with F(-) of the form*:

W)  FEN =]

1 N2 T2
ln[( tor) + 0 dr (0<t<1)
0

t— 1)+ [H —z(r)]?
which arises in inverse gravimetry (8], p.15. For other examples, see, e.g., [2], [4],[5].

The pejorative term “ll-posed” arose from Hadamard’s attitude that such prob-
lems could not be treated usefully and would occur only by erroneously considering
a problem in an unreasonable context. However, a variety of genuine applications
(which, a priori, are reasonable contexts!) do force on us the consideration of such
problems and, fortunately, techniques have been found for useful treatment.

In practical applications, the data [F,y| are known only approximately, with per-
turbations/uncertainties arising from several sources. First, measurements are inher-
ently inexact — although one usually can assume that this inexactitude can be arbi-
trarily reduced albeit with increasing cost for improved precision. Second, obtaining
a tractable mathematical description of the problem introduces so-called ‘modelling
error’. Third, inaccuracies arise from computational limitations (e.g., approximation
from a finite basis, finite-precision computer arithmetic, ...); again, these can usu-
ally be arbitrarily improved with increased cost. In effect, one must always deal with
perturbed problems (1.2).

In order to obtain reasonable approximations to the ‘true’ solution Z of (1.1), one
must solve a ‘regularized’ problem constructed from the perturbed data:

(1.4) [Fyy,p] — =

where p parametrizes the approximation scheme in a way which reflects a priort in-
formation, estimates of the perturbation magnitude, etc. Such a regularized problem

4The value of the parameter H > 0 is experimentally determined. The ‘true’ function has a similar
form with the ‘true’ value H



should have the properties:

(1.5) (/)  well-posedness: given the triple [F,y,u], one can,
indeed, obtain z in (1.4); further with
u fixed the z obtained is unique and depends stably
(continuously) on[F,y}, at least for [F,y] ‘close to’ [F,{];
(17)  convergence: given a sequence [F,y|, — [F,7],

appropriate choice of u = y gives zx — T via (1.4).

The condition (i) is of great practical importance. Since the regularized problem
defined by [F,y, u| is to be solved computationally, this problem should be robust.
The condition (ii) is of obvious theoretical importance. It ensures that the true
solution Z can be obtained with arbitrary precision if one will ‘pay the price’ — this
is the same result as for so-called ‘well-posed problems’ although here one expects a
much more rapid increase of cost with demands for increased precision to the extent
that requests for more than moderate accuracy become practically infeasible.
Perhaps the best known such regularization technique is the method of Ttkhonov
regularization [7] in which (taking the abstract parameter p of (1.4) to be a number
a > 0) one obtains solutions z, by solving the unconstrained minimization problem:

(1.6) |1 F(z) - yll} + aJ (x) = min (z € X)

where J () is a non-negative penalty function suitably chosen to incorporate a priori
information about the true solution. (Often one takes J (z) := ||Lz — 2||% where the
choice of L : X — Z indicates assumptions as to the regularity of Z; see (2.2).)

Alternatively, one may choose an explicit bound 3 on the penalty term J (z) and
solve the constrained minimization problem

(1.7) 17 (z) — ylly = min (zeX, J(z) <P)

to obtain an approximate solution zg (using (1.7) to define (1.4) with p replaced by
B > 0). See [8] where this regularization technique is used to solve the nonlinear
integral equation given by using (1.3) in (1.2).

The object of this report is to examine the abstract techniques (1.6), (1.7) under
reasonable hypotheses for which we can demonstrate the properties (1.5). A similar
analysis was carried out in [3] for the method of generalized interpolation and variants.

2. Well-Posedness of Regularized Problems

We will be considering, abstractly, schemes of the forms (1.6) or (1.7) for which
the basic ingredients are:



. the spaces X, VY;
. the penalty function J (-} : X — [0,00] (but J # oo);
. the form of F'(-) with a topology for perturbations.

We begin with assumptions on X, J (-):

(2.1) (f) X is a Banach space and there is given a continuous
map Po: X — X, = [another Banach space];
(¢7)  for each (finite) v > 0 and any sequence {z;} in X
such that J(zx) <~ and {Pozx} is bounded in X,
there is a subsequence {z,(;)} converging weakly in
X tosome & for which J(£) < 4.

The condition (#7) is essentially lower semicontinuity of J (-) together with a coercivity
condition on [J (z) + ||Poz||].

As a typical setting for applications, consider a Hilbert space X, a closed (densely
defined) linear operator L : X — Z = [another Hilbert space], Py the orthogonal
projection: X — Xy := N(L) and set

(2.2) J(z) := {||Lz — 2|} for z € D(L); oo else}.

For example, it might be convenient to take X = Y = L?(0,1) and let L = d/dt so J
effectively penalizes the H*-norm; here one would have Xy = {constants}.

Suppose L were to have a continuous right inverse R : Z — N(Pp) so LRz = 2
for z € Z. Then, given any sequence {z,} € X, we may write z;, = u; + v; with
ug = Pozi, € N(L) so J (zx) = J (vi). If J (zx) < < oo then zi,vx € D(L) and
we set z, 1= Lz, = Ly, € Z. Note that Rz, = v, since LRz, = 2z, = Lv, gives
(Rz, — v;) € N(L) whereas v, Rz, € N(Py). We have ||z|z < v/* + IlZ]|z so
there is a subsequence {k(7)} for which z,;; — 2 (weak convergence in Z) whence
V() = Raky) — R2 =: & (weak convergence in N(Po) C X; with that o € D(L)
since J is lower semicontinuous for this weak topology). Since we assume {u;} is
bounded, we may extract further a subsubsequence {k'(y)} for which also up;) —
(weak convergence in N(L) C X) so zp(j) — (& +9) =: 2. Clearly L2 = L = 2 =
w — limzy(j) so J (z,) = ||2x — 2||% < 7 gives J (&) = [|2 — 2||3 < v and we have
demonstrated (2.1)(ii). Note, also, that if we can only verify the surjectivity of L,
hence the surjectivity of the restriction Ly of L to N(P), then it follows from the
Closed Graph Theorem that a continuous R exists as above.

We have proved the following:

Lemma 1: Let X,Z be Hilbert spaces and L : X D D(L) — Z a closed linear
operator such that Lz = z is solvable for each = € Z. Then, defining J (-) by
(2.2) and taking P to be the orthogonal projection on Xy := N (L), we have (2.1).

O



Clearly, using J () as in Lemma 1 for (1.6) or (1.7) gives z, (resp., z5) in D(L).
Similar arguments permit the construction of such J (-) for more general X than
Hilbert spaces — essentially, one needs reflexivity of N (L) and of Z and the existence
of a closed complement to N (L) in X.

Next, we consider assumptions on [ and on the admissible functions F(-):

(2.3)(r) Y is a Banach space; F(): X D D(F) — Y with
{zr e D(F) c X :J(z) < oo} nonempty;
(17)  for any sequence {zx} in D(F) such that
z, — & weakly in X with {F(z,)} bounded in Y,
we have £ € D(F) and F(z;) — F(2) weakly in VY;
(117)  F()) is ‘Po — coercive’: i.e., if {F(z)} is defined and bounded in Y
then {Poz,} is bounded in Xp.

For (1), (¢i7) we are, of course, considering the same J (-), Py as in (2.1). We remark
that (¢7) and (s¢7) will only be applied to sequences for which {J (zx)} is also bounded
and so need be verified only in that context. Note that, for reflexive Yy, the condition
(¢2) is equivalent to assuming that the graph of F(-) is closed with respect to sequential
weak convergence in I X V.

As a typical setting for applications, consider X, Y reflexive and F(-) of the form:

(2.4) F(z) := A(2)z + G(2) with z:= Bz

where B is a compact linear map: X — Z = [another Banach space| and

A(): Z — B(X,Y) := [continuous linear maps: X — Y|,

G : Z — Y, =Y topologized by sequential weak convergence]

are continuous nonlinear maps. If z, — £ weakly in X, then one easily sees that
zp := Bz — 2 := BZ strongly in Z whence Ay := A(2;) — A = A(2) in B(X,Y)
and gy, := G(Z) — § := G(2) weakly in Y. Now

Ak.’Ek — Az = (Ak - A)Illk + A(mk - .’f:)

and the first term on the right goes strongly to 0 (as ||[Ar — A|| — 0 and {z\} is
bounded) while the second term goes weakly to 0 in Y as z;, — & in X. Thus one
has (2.3)(z), (¢7); verification of (2.3)(1it) is likely to be more application-specific.

Theorem 1: Suppose (2.1), (2.3) hold. Then, for arbitrary y € Y, each of the
problems (1.6) (for arbitrary a > 0) and (1.7) (for large enough f > 0 ) has a
solution, i.e., the minimum is attained in each case,

PROOF : We first consider the constrained problem (1.7). Set

Sg:={zeD(F)cC X:J(z)<p}



and note that S; must be nonempty for large enough (finite) B by (2.1)(r). Suppose
{x)} is any minimizing sequence for || F'(z) —y||y on S5. Certainly {F(z)} is bounded
in Y so, by (2.3)(¢71), {Poxs} is also bounded in Xo. By (2.1)(77), it then follows that
there is a subsequence (again denoted by {z;} for simplicity) which converges weakly
in X, ie., 7 — & with J (&) < 8. Now, by (2.3)(i7) we have £ € D(F) (so & € Sp)
and F(z;) — F(%) weakly in Y. By the lower semicontinuity of the Y-norm, it then
follows that

|F(2) - yll}, < liminf | F(z2) - oy = inf{|F(z) — l} : = € S5).

Thus the minimum over $j is attained at Z.

The proof for (1.6) is much the same. Given any minimizing sequence {z;} for the
unconstrained problem (1.6), we necessarily have both {||F(zx) — y||} and {J (z)}
bounded since each is non-negative and a > 0. As above, there is a subsequence
converging weakly in X to some £ and we again obtain £ € D(F) and the minimum
is attained at Z. ]

This shows the existence part of (1.5)(¢) for these two regularization methods.
Uniqueness is rather more difficult, independent of any difficulties due to ill-posedness
of (1.2). One possible way to obtain uniqueness (and continuous dependence on y)
for (1.6) would be to require that the functional || F(z) — y||}; be convex in z, making
its derivative (assuming sufficient regularity) a monotone operator so the regularizing
term can provide strict monotonicity and so uniqueness of the minimizer. While
this is immediate for linear F(-) in Hilbert space settings, it is likely to be somewhat
restrictive for nonlinear functions, yet can, on occasion, prove useful; see [9]. A certain
weaker continuity property with respect to perturbation of y € Y can be obtained
without imposing any new assumptions.

Theorem 2: Assume (2.1), (2.3). Fixing o > 0 in (1.6), let =, be a minimizer for
(1.6), i.e., for (1.6) with y = y, wherey, — y, in Y. Then there is some subsequence
{Zn(k)} converging weakly in X to some minimizer z, for (1.6), i.e., (1.6) withy = y.;
if (1.6) has a unique minimizer, then z, — z.. A similar result holds for (1.7).

PROOF : For (1.6), set
Q(z,y) = |F(z) = ylly + o (2)
for x € D(F) C X and y € Y. We have, for any € > 0, existence of C, such that
(a+ )% < [1+ela® + C.b? (a,b € IR)
whence, as aJ > 0, one has

(25) Qz,y) < (1+€)Q(z,y) + Celly — ¥lly (x € D(F); y,y' € Y).



From this we obtain, with z, some minimizer for (1.6),

Qzn 1) < (1+6)Q(2n,un) + Cellun —wlly by (25)
< (L4 ¢€)Q(zo,yn) + Cellyn — y,,||§ by minimality for z,
< (1+)Q(zo,y.) + (2 +€)Cellyn —welly by (2.5).

The right hand side can be made arbitrarily close to the minimum Q(zo,y.) by first
taking € > 0 small and then ||y, — y.|| small enough. Hence {z,} is a minimizing
sequence for (1.6). The existence of the subsequence ) — z, then follows as in
the proof of Theorem 1 which also shows that z. minimizes (1.6). Convergence of
the full sequence when the limit of convergent subsequences is unique is a standard
argument. The proof for (1.7) is essentially the same. O

3. Convergence of Regularized Solutions

For our convergence analysis we assume a sequence of perturbed problems
(3.1) Fk(:l:) = Yk
with data |Fy, yx| converging, in a sense to be made precise below, to the ‘true’ data
[F, ] of (1.1). We do not, of course, consider (3.1) directly (i.e., as an equation de-
termining possible solutions z;) but wish to use the data to consider a corresponding
sequence of regularized problems — either using Tikhonov regularization as in (1.6)
or constrained minimization as in (1.7). From the regularized problems we obtain a

sequence {z,} and, under reasonable assumptions on the problem and our approaches,
we wish to demonstrate convergence to the ‘true solution’ z:

(3.2) Iy — T strongly in X.

For the method of Tikhonov regularization, we modify® (1.6) slightly and consider
the unconstrained approzimate minimization problem:
(3.3) HFk(x) - kaIZJ + ak.] (IE) S inf +5k (.’IJ € D(Fk) C l’)

where 6, > 0 is a small parameter. (We will later take o — 0 and 6, — O as
(Fe,ye) — [F,9]). Similarly, we modify® the regularization given through (1.7) and
consider the approximate problem:

(3.4) 1 Fe(z) = well}) < inf+6; (z e D(F,) C X; Jl(z) < By)-

®This modification reflects computational reality: one never actually expects to obtain the exact
minimum (even when it is attained) but can find = giving values arbitrarily close to that. A side
effect of this modification is that (3.3) makes sense, theoretically and computationally, even when
the minimum may not be attained; this will permit us to relax somewhat the restrictions on F(:)
which would be imposed by (2.3).

SThe significance of the modification (replacing “= min” by “< inf +§5”) is the same here as indicated
above for (1.6), (3.3).



We assume D (F)) is nonempty and g, is large enough that
(3.5) Sk i={zeD(I)CcX:J(z)<Br}#£ ¢ (k=1,2,...)

so (approximate) minimization over S, is meaningful in (3.4).

Most applications can be formulated so Dy, := D(F,) = D(F) =: D, independent
of £ — indeed, usually with D, = D, = X. Occasionally, however, it is convenient to
incorporate partly in the specification of Dy a computational implementation of Fj
defined, e.g., only for ‘mesh functions’. For simplicity’ we take X as fixed and embed
Dy (e.g., as a subspace) in X with suitable approximation properties familiar from
the numerical analysis literature; similarly, we assume the codomain of each Fy(-) is
(embedded in) the fixed Banach space Y. Note that in applications the approximating
nature of Fy(:) as a perturbation of F(-) includes the treatment of modelling errors,
the specification of relevant parameter values (in some general form of F(-) — e.g.,
as the value of H in (1.3)), and also the nature of the computational implementation
to be used.

The relevant notion of convergence, Fi,(-) — I(:), is most easily viewed as a
geometric notion of convergence for the graphs, considered as subsets of X x Y.
Specializing the definition from [3] to the present case, we have:

DEFINITION : We say “{I%(-)} is graph-subconvergent to F(-)” if:
(3.6) Given any subsequence {k(5)} and a sequence {%;} in X such that
£; € D(Iy)); &, — & weakly in X and
i = Fij)(2;) — § strongly in VY,
we have £ € D(F) and § = ().
If, in addition, we have:

(3.7 For each & € D(F) there is some sequence {Zx} in X
such that Z, € D(I}) with %, — & strongly in X
and Fi(Z;) — F(Z) strongly in Y

then we say “{Fi(-)} is graph-convergent to F'(-)”.

See [3], [4] for further discussion and some examples. We remark here that (3.7)
will be needed only for £ = Z, the (unique) solution of (1.1), and need only be verified
for .

We will continue to impose (2.1), as before, but now adjoin an additional assump-
tion regarding the penalty function J (-):

(3.8) For any weakly convergent sequence {zx} in X(so zx — z.),

if J(zx) — J(z.) < oo then the sequence {z;} is strongly convergent in X.

"Generalization of this framework is possible but, for our present purposes, seems an unwarranted
complication.



It is not difficult to relate this to a geometric condition on the level surfaces of J (-):
(3.8) is implied by the condition:

(3.9) Given £ € X with J(£) < oo and given € >0, thereisa 6 >0
and a ‘cylinder set” C C X of the form
Ci={zeX:|(&,z—-2)| <6 for k=1,...,K}
(with each & € X'*) such that £ € C and
Cn{z:|J(z) = J(&)] <6} CB.(2):={z € X:|z—&|r <e}

It is well known that, in any uniformly convex Banach space X, the norm (or any
strictly increasing function of it) has this property (3.9) — indeed, one can take K =1
and & to be the support functional at £ to {z € X : ||z]| < ||2]|} in constructing C
— and so J (z) := ||z||% satisfies (3.8).

Returning to (2.2) in the setting of Lemma 1, we note that D (L) becomes a Hilbert
space (a fortiori uniformly convex) under the norm [||Poz]|?+J (z)]'/?; the topologies
of weak convergence are compatible. If Xy := N (L) is finite dimensional then weak
convergence in X already gives strong convergence in X, and (3.8) is easily verified;
similar considerations apply to more general convex penalty functions.

In view of the modifications of (1.6), (1.7) and our somewhat different present
perspective, we discard the earlier assumptions (2.3) as possibly applying to each of
the Fy(:). Instead, we introduce new assumptions on the limit problem (1.1) and on
the sequence {Fi(-)}:

(3.10) (1) Y is a Banach space; F(-): X D> D(F) — Y;
F(): X DD(F) > Y for k=1,2,...; {F()} is
graph-subconvergent to F(-) in the sense of (3.6);

(/)  there is some sequence {Zx} with £, € D(Fy)
such that %, — 7 strongly in X, J (i) — G,
and Fy(%;) — § strongly in Y;

(1717)  the sequence {Fi(-)} is ‘Po-coercive’: if {Fi(zy)}
is defined and bounded in Y then {Pozx} is
bounded in X,.

Typically, in applications one has D(Fy) D D(F) (e.g., D(Fix) = X ) and (3.10)(s47)
is automatic: one simply takes Z, = % for k = 1,2,.... Note that the earlier set of
assumptions (2.3) just corresponds to (3.10) with Fi(:) = F(:) = F(:).

We are now ready to demonstrate, separately, the convergence (3.2) for each of
the regularization techniques: (3.3) and (3.4). We consider first the approach by
constrained minimization.



10

Theorem 3: Assume (2.1), (3.8). Assume [F',§] is such that (1.1) has a unique
solution £ € X; assume (3.10) and that y, — § strongly in Y. Let §, — [ with
each Py large enough to give (3.5); this is always possible. Let {z,} be any sequence
satisfying (3.4) for each k with 0 < & — 0; such sequences always exist. Then one
has strong convergence: =, — T strongly in X .

PROOF : By (3.10)(:7) one need only take, e.g., Bx > P(%;) — § to have (3.5); the
form of (3.4) with 0 < § then ensures existence® of z; satisfying (3.4) for each k.
Clearly {8} is bounded so {J (zx)} is bounded. Since (3.4) gives

I Fe(ze) = vell}) < (1Fe(Ee) = dlly + 117 — velly)® + 6

and the properties of {Z}, {yt}, {6r} make the right hand side go to 0, we see that
{Fr(zx)} is not only bounded but, also, Fi(zx) — 7 strongly in Y. By (3.10)(¢1t), we
then have {Pyz;} bounded in X, as well. The assumption (2.1)(¢Z) then applies and
we have existence of a subsequence {zy(; } such that £; := zy(;) —  weakly in X for
some £. Applying (3.10)(7), the definition (3.6) of graph-subconvergence ensures that
£ € D(F) and F(£) = lim Fy(j(%;) = §. The assumed uniqueness of the solution of
(1.1) then implies that & := w — lim z,(;) must be T and so, by a standard argument,
that z; — Z weakly in 1.

Now suppose liminf J (z;) < §. We could then find o < 8 with J (z;) < « for
large k. Applying (2.1)(d7) to {z: : k > K} gives a subsequence {x(;} such that
Ty(;) — & weakly in X with J (&) < a < fB. Since we have already shown z, — Z,
this is a contradiction. Thus, liminf J (z;) > §. On the other hand, J (z;) < 8; by
(3.4) and B — B so limsup J (zx) < B. This shows J (z;) — § := J (Z) and (3.8)
gives the desired strong convergence. ]

The argument in the case of Tikhonov regularization is rather similar. In this
case we will need a condition on the sequence {a} of regularizing parameters — it
must go to 0 but must do so ‘slowly enough’. We will be assuming yx — ¢ in Y and
existence of a sequence {Z;} as in (3.10)(¢7). Set

(3.1]) l;k = ||Fk(53k) — yklly s %k = J (ik)
We will require
(3.12) (f) 0< ay — 0;

(17) D}/oy — 0

and remark here that such sequences {ay} always exist since 7, — 0, noting that
Fi(%r) — 9 by (3.10)(27) and yr — 7.

8 At this point we remark that the mere existence of such z; is not really at issue — after all, we were
willing to assume (3.10)(z2). The point is that, given (3.5), we can expect a feasible implementation
(for each k) enabling us actually to compute explicitly an zj satisfying (3.4). It is the convergence
to Z of this computed sequence which is the real point of this theorem.
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Theorem 4: Assume (2.1), (3.8). Assume [F,§] is such that (1.1) has a unique
solution T € X; assume (3.10) and that y, — § strongly in Y. Let oy satisfy (3.12)
and take 0 < 6, with éx/ax — 0. Then for any sequence {z} satisfying (3.3) we have
strong convergence: =, — & strongly in X.

PROOF : The form of (3.3) with o) > 0 ensures existence of a solution z; for each
(3.3). As above for (3.4), we remark that we are interested in the particular z
obtained by some explicit computational procedure; for this {z,} set

_ Vi = || Felze) — velly »ve = J (z).
The minimality property (3.3) gives
(313) ‘ l/: + O Yk S I;Z + ak%’k + 6k.

The right side goes to 0 as & — 0, o — 0, 6 — 0, 4, — B ; hence, as in the
previous proof, we have {Fi(z;)} bounded with F,(z,) — ¥ strongly in y and, again
by (3.10)(217), {Poxz} is bounded in X, as well.

To bound {7}, we observe that the estimate (3.10) can be divided by a; to give

e < (Up]ew) + A + (6 /o).

We have assumed 6;/ax — 0 and, by (3.12)(¢7), that ¥2/a), — 0; by (3.10)(s7) we
have 4, — §. Thus, we have

(3.14) limsup J (z;) < 8.

In particular, {J (zx)} is bounded and (2.1)(¢z) applies to give existence of a sub-
sequence {Ty(;)} with xy;;) — & weakly in X. The graph-subconvergence (3.10)(r)
ensures that £ € D(F) with F(2) = lim Fy(j)(zk(j)) = 7 (since vy(;) — 0 by (3.12)).

The argument that liminf J (zx) > 0 is exactly as in the proof of Theorem 3 and,
with (3.11), again gives J (z;) — B = J (z). Again, application of (3.8) gives the
desired strong convergence (3.2). O

4. An Exemplary Application

In this section we will discuss an important ill-posed inverse problem arising in
‘remote sensing’ of the atmosphere. Here one wishes to estimate the atmospheric
temperature profile from infrared radiation measurements taken by a satellite at the
top of the atmosphere.

The relationship between radiative intensity I and temperature T' is modelled by
the nonlinear integral equation

(4.1) I(v) = fs(v,T(a)) + /ab f(v,p, T(p)) dp
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Here v is the wavenumber and p denotes atmospheric pressure, a monotonically de-
creasing function of height above the surface. The function fg models the contribution
from the surface and is continuous in both its arguments. The function f is nonlinear
in T and depends smoothly on all three arguments®. Making the identifications

y=1I(), z=T(), and F(z) = fs(-,z(a +/ (-,p,z(p)) dp

gives a nonlinear operator equation: F(z) = y. In practice, measurements of y (i.e.,
of I{-)) are subject to instrument error. Moreover, simplifying assumptions are used
to derive the model equation (4.1). Thus we must deal with a perturbation of the
underlying ‘true’ problem F'(z) = §.

Since we expect atmospheric temperature to vary smoothly with height, we assume
that = lies in X := H'(a,b). We will make the (physically reasonable) assumption
that the measurements y lie in Y := L?*(c,d). Under these assumptions, the problem:
F(z) = y is ill-posed. From the continuity of fs, the smoothness of the kernel f, and
the fact that weak convergence in H'[a,b] implies strong convergence in C|a, b], one
can easily show that the operator F': X — Y is weakly continuous. If we define the
penalty functional J (z) as in (2.2) with Z := L?(a,b) and Lz := dz/dt, then the
results of the previous sections hold. Numerical results using the method of Tikhonov
regularization (1.6) have been obtained for this problem by O’Sullivan and Wahba
(2].

Now let us consider a modification of this. In practice, at a certain height the gra-
dient of the temperature of the atmosphere may vary quite rapidly: the dependence
of temperature on height may still be smooth when viewed on a microscopic scale,
but on a macroscopic scale, it is convenient to assume a jump in the derivative of z.
Both the location 7 and the magnitude m of this jump are unknown, and both are
to be estimated. In this case we may consider the ‘parametrization’:

(4.2) z(t) =u(t)+m-(t—7)H({ —7),
where v € H?*(a,b) and H(-) denotes the Heaviside function. The inverse problem
may now be reformulated as solving I'(u,m,7) = y for the triple [u,m,7} in X' :=
H?(a,b) X IR x |a,b], where

F: X' L¥ec,d) : [u,m,7] — y

is given by

(4.3) F(u,m,7) = fs(-,u(a +/ (,p,u m-(t—7)H(p— 7)) dp.

9Details, including the exact form of fs and of the kernel f(v, T, p), appear in [1].
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A penalty functional J (z) such as (2.2) is no longer appropriate. Instead, we may
consider!®

J (uym, 1) = [Jullfpaap) +m’ + (r = a)’.
The results of the previous sections now apply to this example. To obtain (2.1), note
that when {J (uk,mk,7%)} is bounded we can extract a subsequence {k(7)} for which
{ur(;)} converges weakly to some u in H?(a,b), {my(;} converges to some m € IR,
and {74(;)} converges to some 7 € |a,b]. To obtain (2.3)(¢7), consider

(4.4) op(t) = up(t) +my - (t — 1) H(t — 71),
z(t) = ut)+m- -t —-7)H(t —1).

If {ux} converges weakly to u in H?|a,b], my — m, and 7, — 7, we can easily show
that {z;} converges to  in Cla,b] (uniform convergence) and, from the continuity of
fs and the smoothness of f, show that {F(z;}) converges to F(z) in Y = L*(c,d).
Theorem 1 now applies and, subject to the existence/uniqueness assumptions for the
solution!!, so does Theorem 2. Similarly, one may verify conditions (3.8) and (3.10)
to apply Theorems 3 and 4. '

It is instructive to consider the contingency that the true solution does not, in fact,
involve a jump. The representation above will cover this case by taking m = 0 but we
note that this leaves 7 indeterminate and so introduces a spurious nonuniqueness!?
for the ‘true’ solution. Looking more carefully at, e.g., the proof of Theorem 3, we
observe that the uniqueness was used only to ensure that the convergent subsequences
extracted all converged to the same limit — the true solution. That would remain
the case here even though different such subsequences might involve convergence to
different representations of that solution.

Numerical implementation of these ideas is straightforward; see Shiau 5], [6].

Extension of this analysis to the possibility of several jumps (with a bound on
the number) is immediate. The extension of these ideas for solutions in two or three
variables appears likely.

References

(1] Liou, K-N., An Introduction to Atmospheric Radiation, Academic Press, New
York, 1980. '

10Actually, to have X' a Banach space as in the earlier statements, we may take its last factor to be IR,
rather than [a, b, and then define J to be co when 7 ¢ [a,b]. This leaves J lower semicontinuous,
etc.

UVerification of the uniqueness is ‘application-specific’ and is typically the technically most difficult
part of justifying these approaches.

12 Actually, it would be possible to deepen the earlier analysis to note that any computational im-
plementation would here ‘automatically’ select r = a for the limit (due to our particular choice of
penalty function) so there would really be no problem.



14

[2] O’Sullivan, F., and G. Wahba, “A cross-validated Bayesian retrieval algorithm for
nonlinear remote sensing experiments”, J. Comp. Physics 59 (1985), pp. 441-455.

{3] Seidman, T.I., “Convergent approximation methods for ill-posed problems. Part
I-General theory”, Control and Cybernetics 10 (1980) pp. 31-49.

[4] Seidman, T.I., “Convergent approximation methods for ill-posed problems. Part
II-Applications”, Control and Cybernetics 10 (1980) pp. 50-71.

[5] Shiau, J., G. Wahba, and D.R. Johnson, “Partial spline models for the inclusion of
tropopause and frontal boundary information in otherwise smooth two and three-
dimensional objective analysis”, Tech. Report #777 Univ. of Wisconsin-Madison
Statistics Dept., Madison, WI (Dec. 1985)

[6] Shiau, J., “Smooth spline estimation of functions with discontinuities”, Tech.
Report #768 Univ. of Wisconsin-Madison Statistics Dept., Madison, WI (1985).

[7] Tikhonov, A.N. and V.Y. Arsenin, Solutions of Ill-Posed Problems, (translated
from the Russian), Wiley, New York, 1977.

[8] Vogel, C.R., ”An overview of numerical methods for nonlinear ill- posed prob-
lems”, in Proceedings of the Alpine-U.S. Seminar on Inverse and Ill-Posed Prob-
lems, C.W. Groetsch and H. Engl, Eds., Academic Press, to appear.

[9] Vogel, C.R., “A constrained least squares method for nonlinear ill-posed prob-
lems”, preprint (1986).



